Part Number Hot Search : 
M62705 05RD11 740021 PM534 30010 7OSC0462 MT8809AC PW824K3F
Product Description
Full Text Search
 

To Download STW81102 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STW81102
Multi-band RF frequency synthesizer with integrated VCOs
Preliminary Data
Feature summary

Integer-N Frequency Synthesizer Dual differential integrated VCOs with automatic center frequency calibration: - 3000 - 3620 MHz (Direct output) - 4000 - 4650 MHz (Direct output) - 1500 - 1810 MHz (Internal divider by 2) - 2000 - 2325 MHz (Internal divider by 2) - 750 - 905 MHz (Internal divider by 4) - 1000 - 1162.5 MHz (Internal divider by 4) Excellent integrated phase noise Fast lock time: 150s Dual modulus programmable prescaler (16/17 or 19/20) 2 programmable counters to achieve a feedback division ratio from 256 to 65551 (prescaler 16/17) and from 361 to 77836 (prescaler 19/20). Programmable reference frequency divider (10 bits) Phase frequency comparator and charge pump Programmable charge pump current Digital Lock Detector Dual Digital Bus Interface: SPI and I2C bus with 3 bit programmable address (1100A2A1A0) 3.3V Power Supply Power down mode (HW and SW) Small size exposed pad VFQFPN28 package 5x5x1.0mm Process: BICMOS 0.35m SiGe
VFQFPN28
Applications


2.5G and 3G Cellular Infrastructure Equipment CATV Equipment Instrumentation and Test Equipment Other Wireless Communication Systems
Description
The STMicroelectronics STW81102 is an integrated RF synthesizer with voltage controlled oscillators (VCOs). Showing high performance, high integration, low power, and multi-band performances, STW81102 is a low cost one chip alternative to discrete PLL and VCOs solutions. STW81102 includes an Integer-N frequency synthesizer and two fully integrated VCOs featuring low phase noise performance and a noise floor of -154dBc/Hz. The combination of wide frequency range VCOs (thanks to centerfrequency calibration over 32 sub-bands) and multiple output options (direct output, divided by 2 or divided by 4) allows to cover from 750MHz to 905MHz and 1000MHz to 1162.5MHz, from 1500MHz to 1810MHz and 2000MHz to 2325MHz, from 3000MHz to 3620MHz and 4000MHz to 4650MHz bands. The STW81102 is designed with STMicroelectronics advanced 0.35m SiGe process.

Order codes
Part number STW81102AT STW81102ATR Temp range, C -40 to 85 -40 to 85 Package VFQFPN28 VFQFPN28 Packing Tray Tape & Reel
March 2006
Rev 1
1/42
www.st.com 1
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
Contents
STW81102
Contents
1 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1 1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 2.2 2.3 2.4 2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 4
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 Reference input stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A and B counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Phase frequency detector (PFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Lock detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Voltage controlled oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VCO Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 VCO Frequency Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 VCO Voltage Amplitude Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Power ON reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 START condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STOP condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/42
STW81102 5.1.6 5.1.7 5.1.8 5.1.9
Contents Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current byte address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 5.3
Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 FUNCTIONAL_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 B_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 A_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 REF_DIVIDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 READ-ONLY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4
VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6
SPI digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 6.2 6.3 6.4 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Bits table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 VCO calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1 7.2 7.3 7.4 Direct Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Divided by 2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Divided by 4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Evaluation Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8 9 10
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3/42
List of tables
STW81102
List of tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Digital logic levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Phase noise specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Current value vs selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Voltage level expected on the resonator nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Single-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Multi-byte write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current Byte Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Write-only registers list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Different functional mode of the FUNCTIONAL_MODE register . . . . . . . . . . . . . . . . . . . . 25 SPI data structure (MSB is sent first) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Address decoder and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SPI Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Order code of the evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4/42
STW81102
List of figures
List of figures
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VCO A (Direct output) closed loop phase noise at 3.3GHz with FSTEP=400KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO B (Direct output) closed loop phase noise at 4.0GHz with FSTEP=400KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO A (Div. by 2 output) closed loop phase noise at 1.65GHz with FSTEP=200KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO B (Div. by 2 output) closed loop phase noise at 2.0GHz with FSTEP=200KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCO A (Div. by 4 output) closed loop phase noise at 825MHz with FSTEP=100KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 VCO B (Div. by 4 output) closed loop phase noise at 1.0GHz with FSTEP=100KHz (FPFD=400KHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PFD Frequency Spurs (Div. by 2 Output; FPFD=400KHz) . . . . . . . . . . . . . . . . . . . . . . . . . 15 PFD Frequency Spurs (Div. by 4 Output; FPFD=400KHz) . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reference Frequency Input Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VCO Divider Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PFD diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Loop filter connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VCO Sub-Bands Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Start and Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Byte format and acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Data and clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Start and stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SPI input and output bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SPI Timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Differential/single ended output network in the 3.0 - 4.65GHz range (MATCH_LC_LUMP_4G_DIFF.dsn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn) . . . . . . . . . . . . . . 35 Microstrip line and lumped matching network (MATCH_4G_HYBRID.dsn) . . . . . . . . . . . . 35 Differential/single ended output network in the 1.5 - 2.325GHz range (MATCH_LC_LUMP_2G_DIFF.dsn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn) . . . . . . . . . . . . . . 36 Lumped output matching for divided by 2 output (MATCH_LC_BAL_2G.dsn) . . . . . . . . . 37 LC lumped balun for the divided by 4 output (MATCH_LC_LUMP_1G.dsn) . . . . . . . . . . . 37 Lumped output matching for divided by 4 output (MATCH_LC_BAL_1G.dsn) . . . . . . . . . 38 Application diiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 VFQFPN28 Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5/42
Block diagram and pin configuration
STW81102
1
1.1
Figure 1.
Block diagram and pin configuration
Block diagram
Block diagram
OUTBUFP OUTBUFN REF_CLK VDD_PLL VSS_PLL REXT
VDD_OUTBUF VSS_OUTBUF
BUF
VDD_DIV4 VSS_DIV4
VCO BUF
DIV4 BUF
DIV2 BUF
VSS_CP
VDD_DIV2 VSS_DIV2
REF Divider P F D VCO Divider
UP DN
DIV4
DIV2
VDD_CP
VDD_BUFVCO VSS_BUFVCO
C P
ICP
BUF
EXTVCO_INP EXTVCO_INN EXT VCO BUF
LOCK_DET
DBUS_SEL SCL / CLK SDA / DATA ADD0 / LOAD ADD1 ADD2
DBUS
VCO BUFF
VDD_VCOA VSS_VCOA VDD_VCOB VSS_VCOB VDD_ESD VSS_ESD
VCO Calibrator
VDD_DBUS VSS_DBUS
EXT_PD
TEST1
TEST2
VCTRL
6/42
STW81102
Block diagram and pin configuration
1.2
Pin configuration
Figure 2. Pin connection (top view)
ADD0/LOAD
SDA/DATA
VDD_DBUS DBUS_SEL VDD_BUFVCO EXTVCO_INP EXTVCO_INN
SCL/CLK
VDD_VCOA VDD_DIV2
VDD_OUTBUF
OUTBUFP OUTBUFN VDD_DIV4 VDD_VCOB VDD_ESD
VFQFPN28
EXT_PD
ADD2
ADD1
VDD_PLL REF_CLK TEST2 LOCK_DET
VDD_CP
VCTRL
Table 1.
Pin No 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Pin description
Name VDD_VCOA VDD_DIV2 VDD_OUTBUF OUTBUFP OUTBUFN VDD_DIV4 VDD_VCOB VDD_ESD VCTRL ICP REXT VDD_CP TEST1 LOCK_DET Description VCOA power supply Divider by 2 power supply Output buffer power supply LO buffer positive output LO buffer negative output Divider by 4 power supply VCOB power supply ESD positive rail power supply VCO control voltage PLL charge pump output External resistance connection for PLL charge pump Power supply for charge pump Test input 1 Lock detector Test purpose only; must be connected to GND CMOS Output Open collector Open collector Observation
TEST1
REXT
ICP
7/42
Block diagram and pin configuration Table 1.
Pin No 15 16 17 18 19 20 21 22 23 24 25 26 27 28 TEST2 REF_CLK VDD_PLL EXTVCO_INN EXTVCO_INP VDD_BUFVCO DBUS_SEL VDD_DBUS EXT_PD SDA/DATA SCL/CLK ADD0/LOAD ADD1 ADD2
STW81102
Pin description (continued)
Name Test input 2 Reference clock input PLL digital power supply External VCO negative input External VCO positive input VCO buffer power supply Digital Bus Interface select SPI and I
2C
Description
Observation Test purpose only; must be connected to GND
Test purpose only; must be connected to GND Test purpose only; must be connected to GND
CMOS Input
bus power supply CMOS Input CMOS Bidir Schmitt triggered CMOS Input CMOS Input CMOS Input CMOS Input
Power down hardware I2CBUS/SPI data line I2CBUS/SPI clock line I2CBUS address select pin/ SPI load line I2CBUS address select pin I2CBUS address select pin
8/42
STW81102
Electrical specifications
2
2.1
Table 2.
Symbol AVCC DVCC Tstg
Electrical specifications
Absolute maximum ratings
Absolute maximum ratings
Parameter Analog Supply voltage Digital Supply voltage Storage temperature Electrical Static Discharge - HBM(1) - CDM-JEDEC Standard - MM Values 0 to 4.6 0 to 4.6 +150 4 1.5 0.2 Unit V V C
ESD
KV
1. The maximum rating of the ESD protection circuitry on pin 4 and pin 5 is 1KV.
2.2
Table 3.
Symbol AVCC DVCC ICC Tamb Tj Rth j-amb
Operating conditions
Operating conditions
Parameter Analog Supply voltage Digital Supply voltage Current Consumption Operating ambient temperature Maximum junction temperature Junction to ambient package thermal resistance Multilayer JEDEC board 35 -40 Test conditions Min 3.0 3.0 Typ 3.3 3.3 Max 3.6 3.6 100 85 125 Unit V V mA C C C/W
2.3
Table 4.
Symbol Vil Vih Vhyst Vol Voh
Digital logic levels
Digital logic levels
Parameter Low level input voltage High level input voltage Schmitt trigger hysteresis Low level output voltage High level output voltage 0.85*Vdd 0.8*Vdd 0.8 0.4 Test conditions Min Typ Max 0.2*Vdd Unit V V V V V
9/42
Electrical specifications
STW81102
2.4
Table 5.
Symbol
Electrical characteristics
Electrical characteristics All the Electrical Specifications are intended at 3.3V supply Voltage.
Parameter Test conditions Min Typ Max Unit
OUTPUT FREQUENCY RANGE Direct Output Output Frequency Range with Divider by 2 VCOA Divider by 4 Direct Output Output Frequency Range with Divider by 2 VCOB Divider by 4 3000 1500 750 4000 2000 1000 3620 1810 905 4650 2325 1162.5 MHz MHz MHz MHz MHz MHz
FOUTA
FOUTB
VCO DIVIDERS N VCO Divider Ratio Prescaler 16/17 Prescaler 19/20 256 361 65551 77836
REFERENCE CLOCK and PHASE FREQUENCY DETECTOR fref R fPFD Reference input frequency Reference input sensitivity Reference Divider Ratio PFD input frequency Prescaler 16/17 fstep Frequency step(1) Prescaler 19/20 CHARGE PUMP ICP VOCP ICP sink/source(2) Output voltage compliance range Direct Output Spurious(3) Divider by 2 Divider by 4 VCOs Sub-Band 00000 KVCOA VCOA sensitivity(4) Sub-Band 01111 Sub-Band 11111 Sub-Band 00000 KVCOB VCOB sensitivity(4)
(4)
10 0.35 2 1
200 1.5 1023 16
MHz Vpeak
MHz Hz Hz
FOUT/ 65551 FOUT/ 77836
FOUT/ 256 FOUT/ 361
3bit programmable 0.4 -76 -82 -88
5 Vdd-0.3
mA V dBc dBc dBc
90 55 35 70 45 30
105 70 45 85 55 40 8 8
115 85 55 100 85 50 12 12
MHz/V MHz/V MHz/V MHz/V MHz/V MHz/V MHz/V MHz/V
Sub-Band 01111 Sub-Band 11111
VCO A Pushing VCO B
Pushing(4)
10/42
STW81102 Table 5.
Symbol VCTRL
Electrical specifications Electrical characteristics (continued) All the Electrical Specifications are intended at 3.3V supply Voltage.
Parameter VCO control voltage(4) LO Harmonic Spurious
(4)
Test conditions
Min 0.4
Typ
Max 3 -20
Unit V dBc mA mA mA mA
VCO current consumption VCO buffer consumption DIVIDER by 2 consumption DIVIDER by 4 consumption LO OUTPUT BUFFER Output level Return Loss
(4)
25 15 18 14
0 Matched to 50ohm DIV4 Buff 15 26 23 37
dBm dB mA mA mA
Current Consumption
DIV2 Buff Direct Output
EXTERNAL VCO (Test purpose only) Frequency range Input level Current Consumption PLL MISCELLANEOUS Current Consumption Lock up time (4) Input Buffer, Prescaler, Digital Dividers, misc. 40 KHz PLL bandwidth; within 1 ppm of frequency error 12 mA VCO Internal Buffer 3.0 0 15 4.65 +6 GHz dBm A
150
s
1. The frequency step is related to the PFD input frequency as follows: - fstep = fPFD for Direct Output - fstep = fPFD/2 for Divided by 2 Output - fstep = fPFD/4 for Divided by 4 Output 2. see relationship between ICP and REXT in the Circuit Description section (Charge Pump) 3. PFD frequency leakage (400KHz) and harmonics 4. Guaranteed by design and characterization.
2.5
Table 6.
Phase noise specification
Phase noise specification
Parameter Test conditions Min Typ Max Unit
PHASE NOISE PERFORMANCE(1) In Band Phase Noise Floor - Closed Loop(2) Normalized In Band Phase Noise Floor ICP=4mA, PLL BW = 50KHz; including reference clock contribution -220 dBc/Hz
11/42
Electrical specifications Table 6. Phase noise specification (continued)
Parameter In Band Phase Noise Floor Direct Output In Band Phase Noise Floor Divider by 2 In Band Phase Noise Floor Divider by 4 PLL Integrated Phase Noise - Direct Output Integrated Phase Noise 100Hz to 40MHz FOUT = 4 GHz, fPFD = 400KHz, fSTEP =400 KHz, PLL BW = 35KHz, ICP=4mA -38 1.0 ICP=4mA, PLL BW = 50KHz; including reference clock contribution Test conditions Min Typ Max
STW81102
Unit dBc/Hz dBc/Hz dBc/Hz
-220+20log(N)+10log(fPFD)
-226+20log(N)+10log(fPFD) -232+20log(N)+10log(fPFD)
dBc rms
PLL Integrated Phase Noise - Divider by 2 Integrated Phase Noise 100Hz to 40MHz FOUT = 2 GHz, fPFD = 400KHz, fSTEP =200 KHz, PLL BW = 35KHz, ICP=4mA -44 0.5 dBc rms
PLL Integrated Phase Noise - Divider by 4 Integrated Phase Noise 100Hz to 40MHz FOUT = 1 GHz, fPFD = 400KHz, fSTEP =100 KHz, PLL BW = 35KHz, ICP=4mA -50 0.25 dBc rms
VCO A Direct (3000MHz-3620MHz) - Open Loop(3) Phase Noise @ 1 KHz Phase Noise @ 10 KHz Phase Noise @ 100 KHz Phase Noise @ 1 MHz Phase Noise @ 10 MHz Phase Noise @ 40 MHz VCO B Direct (4000MHz-4650MHz) - Open Loop(3) Phase Noise @ 1 KHz Phase Noise @ 10 KHz Phase Noise @ 100 KHz Phase Noise @ 1 MHz Phase Noise @ 10 MHz Phase Noise @ 40 MHz VCO A with divider by 2 (1500MHz-1810MHz) - Open Loop(3) Phase Noise @ 1 KHz Phase Noise @ 10 KHz Phase Noise @ 100 KHz Phase Noise @ 1 MHz -62 -89 -111 -134 dBc/Hz dBc/Hz dBc/Hz dBc/Hz -55 -82 -104 -127 -147 -155 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz -56 -83 -105 -128 -148 -156 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
12/42
STW81102 Table 6. Phase noise specification (continued)
Parameter Phase Noise @ 10 MHz Phase Noise @ 20 MHz Phase Noise Floor @ 40 MHz VCO B with divider by 2 (2000MHz-2325MHz) - Open Loop(3) Phase Noise @ 1 KHz Phase Noise @ 10 KHz Phase Noise @ 100 KHz Phase Noise @ 1 MHz Phase Noise @ 10 MHz Phase Noise @ 20 MHz Phase Noise Floor @ 40 MHz VCO A with divider by 4 (750MHz-905MHz) - Open Loop(3) Phase Noise @ 1 KHz Phase Noise @ 10 KHz Phase Noise @ 100 KHz Phase Noise @ 1 MHz Phase Noise @ 10 MHz Phase Noise Floor @ 40 MHz VCO B with divider by 4 (1000MHz-1162.5MHz) - Open Loop Phase Noise @ 1 KHz Phase Noise @ 10 KHz Phase Noise @ 100 KHz Phase Noise @ 1 MHz Phase Noise @ 10 MHz
(3)
Electrical specifications
Test conditions
Min
Typ -150 -152 -154
Max
Unit dBc/Hz dBc/Hz dBc/Hz
-61 -88 -110 -133 -150 -152 -154
dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
-68 -95 -117 -139 -151 -154
dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
-67 -94 -116 -138 -151 -154
dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz
Phase Noise Floor @ 40 MHz
1. Phase Noise SSB. VCO amplitude setting to value [10]. All the closed-loop performances are specified using a Reference Clock signal at 76.8 MHz with phase noise of -135dBc/Hz @1KHz offset, -145dBc/Hz @10KHz offset and -149.5dBc/Hz of noise floor. 2. Normalized PN = Measured PN - 20log(N) - 10log(fPFD) where N is the VCO divider ratio (N=B*P+A) and fPFD is the comparison frequency at the PFD input 3. Typical Phase Noise at centre band frequency
Upon request an Evaluation Kit is available including a powerful simulation tool (STWPLLSim) which allows to estimate very accurately the Phase Noise of the device according to the desired project parameters (VCO Frequency, Selected Output Stage, Reference Clock, Frequency Step, ...); refer to the Application Information (Section 7) for more details.
13/42
Typical performance characteristics
STW81102
3
Typical performance characteristics
The phase noise is measured with the Agilent E5052A Signal Source Analyzer. All the closed-loop measurements are done with fPFD = 400 KHz and using a Reference Clock signal at 76.8 MHz with phase noise of -135dBc/Hz @1KHz offset, -145dBc/Hz @10KHz offset and -149.5dBc/Hz @1KHz of noise floor.
Figure 3.
VCO A (Direct output) closed loop phase noise at 3.3GHz with FSTEP=400KHz (FPFD=400KHz)
Figure 4.
VCO B (Direct output) closed loop phase noise at 4.0GHz with FSTEP=400KHz (FPFD=400KHz)
0.9 rms
1.0 rms
Figure 5.
VCO A (Div. by 2 output) closed loop phase noise at 1.65GHz with FSTEP=200KHz (FPFD=400KHz)
Figure 6.
VCO B (Div. by 2 output) closed loop phase noise at 2.0GHz with FSTEP=200KHz (FPFD=400KHz)
0.43 rms
0.5 rms
14/42
STW81102 Figure 7. VCO A (Div. by 4 output) closed loop phase noise at 825MHz with FSTEP=100KHz (FPFD=400KHz) Figure 8.
Typical performance characteristics VCO B (Div. by 4 output) closed loop phase noise at 1.0GHz with FSTEP=100KHz (FPFD=400KHz)
0.25 rms
0.23 rms
Figure 9.
PFD Frequency Spurs (Div. by 2 Output; FPFD=400KHz)
Figure 10. PFD Frequency Spurs (Div. by 4 Output; FPFD=400KHz)
-82 dBc @400KHz
-89 dBc @400KHz
15/42
General description
STW81102
4
General description
The block diagram of Figure 1 shows the different blocks, which have been integrated to achieve an integer-N PLL frequency synthesizer. The STW81102 consists of 2 internal low-noise VCOs with buffer blocks, a divider by 2, a divider by 4, a low-noise PFD (Phase Frequency Detector), a precise charge pump, a 10-bit programmable reference divider, two programmable counters and a programmable dualmodulus prescaler. The A-counter (5 bits) and B counter (12 bits) counters, in conjunction with the dual modulus prescaler P/P+1 (16/17 or 19/20), implement an N integer divider, where N = B*P +A. The division ratio of both reference and VCO dividers is controlled through the selected digital interface (I2C bus or SPI). The selection of the digital interface type is done by the proper hardware connection of the pin DBUS_SEL (0 V for I2C bus, 3.3 V for SPI). All devices operate with a power supply of 3.3 V and can be powered down when not in use.
4.1
4.1.1
Circuit description
Reference input stage
The reference input stage is shown in Figure 11. The resistor network feeds a DC bias at the Fref input while the inverter used as the frequency reference buffer is AC coupled. Figure 11. Reference Frequency Input Buffer
VDD
Fref
INV
BUF
Power Down
4.1.2
Reference divider
The 10-bit programmable reference counter allows the input reference frequency to be divided to produce the input clock to the PFD. The division ratio is programmed through the digital interface.
4.1.3
Prescaler
The dual-modulus prescaler P/P+1 takes the CML clock from the VCO buffer and divides it down to a manageable frequency for the CMOS A and B counters. The modulus (P) is programmable and can be set to 16 or 19. It is based on a synchronous 4/5 core which division ratio depends on the state of the modulus input.
16/42
STW81102
General description
4.1.4
A and B counters
The A (5 bits) and B (12 bits) counters, in conjunction with the selected dual modulus (16/17 or 19/20) prescaler make it possible to generate output frequencies which are spaced only by the reference frequency divided by the reference division ratio. Thus, the division ratio and the VCO output frequency are given by these formulas: N=B*P+A ( B P + A ) F ref F vco = -----------------------------------------R where: Fvco: output frequency of VCO. P: modulus of dual modulus prescaler (16 or 19 selected through the digital interface). B: division ratio of the main counter. A: division ratio of the swallow counter. Fref: input reference frequency. R: division ratio of reference counter. N: division ratio of PLL For a correct work of the VCO divider, B must be strictly higher than A. A can take any value ranging from 0 to 31. The range of the N number can vary from 256 to 65551 (P=16) or from 361 to 77836 (P=19). Figure 12. VCO Divider Diagram
VCOBUF-
Prescaler 16/17 or 19/20
VCOBUF+ modulus To PFD
5 bit A counter
12 bit B counter
4.1.5
Phase frequency detector (PFD)
The PFD takes inputs from the reference and the VCO dividers and produces an output proportional to the phase error. The PFD includes a delay gate that controls the width of the anti-backlash pulse. This pulse ensures that there is no dead zone in the PFD transfer function. Figure 13 is a simplified schematic of the PFD.
17/42
General description Figure 13. PFD diagram
VDD
STW81102
D FF
Fref
Up
R Delay R D FF Down ABL
Fref VDD
4.1.6
Lock detect
This signal indicates that the difference between rising edges of both UP and DOWN PFD signals is found to be shorter than the fixed delay (roughly 5 ns). Lock Detect signal is high when the PLL is locked. When Power Down is activated, Lock Detect is let to high level (Lock Detect consumes current only during PLL transients).
4.1.7
Charge pump
This block drives two matched current sources, Iup and Idown, which are controlled respectively by UP and DOWN PFD outputs. The nominal value of the output current is controlled by an external resistor (to be connected to the REXT input pin) and a selection among 8 by a 3 bit word. The minimum value of the output current is: IMIN = 2*VBG/REXT (VBG~1.17 V) Table 7.
CPSEL2 0 0 0 0 1 1 1 1
Current value vs selection
CPSEL1 0 0 1 1 0 0 1 1 CPSEL0 0 1 0 1 0 1 0 1 Current IMIN 2*IMIN 3*IMIN 4*IMIN 5*IMIN 6*IMIN 7*IMIN 8*IMIN Value for REXT=4.7 K 0.5 mA 1.0 mA 1.5 mA 2.0 mA 2.5 mA 3.0 mA 3.5 mA 4.0 mA
Note:
The current is output on pin ICP. During the VCO auto calibration, ICP and VCTRL pins are forced to VDD/2
18/42
STW81102 Figure 14. Loop filter connection
VDD
VCTRL
General description
BUF
Charge Pump
ICP
C3
R3
R1 C1 BUF Cal bit
C2
4.1.8
Voltage controlled oscillators
VCO Selection
Within STW81102 two low-noise VCOs are integrated to cover a wide band from 3000MHz to 3620MHz and 4000MHz to 4650MHz (direct output), from 1500MHz to 1810MHz and 2000MHz to 2325MHz (selecting divider by 2), from 750MHz to 905MHz and 1000MHz to 1162.5MHz (selecting divider by 4). VCO A frequency range 3000MHz-3620MHz VCO B frequency range 4000MHz-4650MHz
VCO Frequency Calibration
Both VCOs can operate on 32 frequency ranges that are selected by adding or subtracting capacitors to the resonator. These frequency ranges are intended to cover the wide band of operation and compensate for process variation on the VCO center frequency. An automatic selection of the range is performed when the bit SERCAL rises from "0" to "1". The charge pump is inhibited and the pins ICP & VCTRL are at VDD/2 volts. Then the ranges are tested to select the one which with this VCO input voltage is the nearest to the desired output frequency (Fout = N*Fref/R). When this selection is achieved the signal ENDCALB (which means End of Calibration) falls to "0", then the charge pump is enabled again and SERCAL should be reset to "0" before the next channel step. The PLL has just to perform fine adjustment around VDD/2 on the loop filter to reach Fout, which enables a fast settle. Figure 15. VCO Sub-Bands Frequency Characteristics
19/42
General description
STW81102
The SERCAL bit should be set to "1" at each division ratio change. It should be noted that in order to reset the autocalibrator State Machine after a power-up, and anyway before the first calibration, the INITCAL bit should be set to "1" and back to "0" (this operation is automatically performed by the Power On Reset circuitry). The calibration takes approximately 7 periods of the PFD Frequency. The maximum allowed fPFD to perform the calibration process is 1 MHz. Using an higher FPFD the following procedure should be adopted: 1. 2. Calibrate the VCO at the desired frequency with an fPFD less than 1 MHz Set the A, B and R dividers ratio for the desired fPFD
VCO Voltage Amplitude Control
The bits A0 and A1 control the voltage swing of the VCO. The following table gives the voltage level expected on the resonator nodes. Table 8. Voltage level expected on the resonator nodes
Code A[1:0] 00 01 10 11 Differential output voltage (Vp) 1.1 1.3 1.9 2.1
20/42
STW81102
I2C bus interface
5
I2C bus interface
The I2C bus interface is selected by hardware connection of the pin #21 (DBUS_SEL) to 0 V. Data transmission from microprocessor to the STW81102 takes place through the 2 wires (SDA and SCL) I2C-BUS interface. The STW81102 is always a slave device. The I2C-bus protocol defines any device that sends data on to the bus as a transmitter and any device that reads the data as receiver. The device that controls the data transfer is known as the Master and the others as the slave. The master will always initiate the transfer and will provide the serial clock for synchronization.
5.1
5.1.1
General features
Power ON reset
The device at Power ON is able to configure itself to a fixed configuration, with all programmable bits set to factory default setting.
5.1.2
Data validity
Data changes on the SDA line must only occur when the SCL is LOW. SDA transitions while the clock is HIGH are used to identify START or STOP condition. Figure 16. Data validity
SDA
SCL DATA LINE STABLE DATA VALID CHANGE DATA ALLOWED
5.1.3
START condition
A Start condition is identified by a HIGH to LOW transition of the data bus SDA while the clock signal SCL is stable in the HIGH state. A Start condition must precede any command for data transfer.
5.1.4
STOP condition
A LOW to HIGH transition of the data bus SDA identifies stop while the clock signal SCL is stable in the HIGH state. A STOP condition terminates communications between the STW81102 and the Bus Master.
21/42
I2C bus interface Figure 17. Start and Stop condition
STW81102
SCL
SDA
START
STOP
5.1.5
Byte format and acknowledge
Every byte transferred on the SDA line must contain bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. An acknowledge bit is used to indicate a successful data transfer. The bus transmitter, either master or slave, will release the SDA bus after sending 8 bits of data. During the 9th clock pulse the receiver pulls the SDA low to acknowledge the receipt of 8 bits data. Figure 18. Byte format and acknowledge
SCL
1
2
3 //
7
8
9
SDA START
MSB // ACKNOWLEDGMENT
FROM RECEIVER
5.1.6
Device addressing
To start the communication between the Master and the STW81102, the master must initiate with a start condition. Following this, the master sends onto the SDA line 8 bits (MSB first) corresponding to the device select address and read or write mode. The first 7 MSB's are the device address identifier, corresponding to the I2C-Bus definition. For the STW81102 the address is set as "1100A2A1A0", 3bits programmable. The 8th bit (LSB) is the read or write operation bit (RW; set to 1 in read mode and to 0 in write mode). After a START condition the STW81102 identifies on the bus the device address and, if matched, it will acknowledge the identification on SDA bus during the 9th clock pulse.
5.1.7
Single-byte write mode
Following a START condition the master sends a device select code with the RW bit set to 0. The STW81102 gives an acknowledge and waits for the internal sub-address (1 byte). This byte provides access to any of the internal registers. After the reception of the sub-address internal byte the STW81102 again responds with an acknowledge. A single-byte write to sub-address 00H will change the "FUNCTIONAL_MODE" register, so a single-byte write with sub-address 04H will change the "CONTROL" register and so on.
22/42
STW81102 Table 9.
S
I2C bus interface Single-byte write mode
1100A2A1A0
0
ack
sub-address byte
ack
DATA IN
ack
P
5.1.8
Multi-byte write mode
The multi-byte write mode can start from any internal address. The master sends the data bytes and each one is acknowledged. The master terminates the transfer by generating a STOP condition. The sub-address decides the starting byte. A multi-byte with sub-address 01H and 2 DATA_IN bytes will change the "B_COUNTER" and "A_COUNTER" registers (01H,02H), so a multi-byte with sub-address 00H and and 6 DATA_IN bytes will change all the STW81102 registers. Table 10.
S
Multi-byte write mode
0 ack sub-address byte ack DATA IN ack .... DATA IN ack P
1100A2A1A0
5.1.9
Current byte address read
In the current byte address read mode, following a START condition, the master sends the device address with the rw bit set to 1 (No sub-address is needed as there is only 1 byte read register). The STW81102 acknowledges this and outputs the data byte. The master does not acknowledge the received byte, but terminates the transfer with a STOP condition. Table 11.
S
Current Byte Address Read
1100 A2 A1 A0 1 ack DATA OUT No ack P
5.2
Timing specification
Figure 19. Data and clock
SDA SCL
tcwl tcs tch tcwh
Table 12.
Data and clock
Parameter Data to clock set up time Data to clock hold time Clock pulse width high Clock pulse width low Minimum time (ns) 2 2 10 5 Tcs Tch
Symbol
Tcwh Tcwl
23/42
I2C bus interface Figure 20. Start and stop
STW81102
Table 13.
Start and stop
Parameter Clock to data start time Data to clock down stop time Minimum time (ns) 2 2
Symbol Tstart Tstop
5.2.1
Ack
Figure 21. Ack
SDA
SCL
8
9
td1
td2
Table 14.
Ack
Parameter Ack begin delay Ack end delay Minimum time (ns) 2 2 Td1 Td2
Symbol
24/42
STW81102
I2C bus interface
5.3
I2C registers
STW81102 has 6 write-only registers and 1 read-only register. The following table gives a short description of the write-only registers list. Table 15. Write-only registers list
DEC CODE 0 1 2 3 4 5 DESCRIPTION FUNCTIONAL_MODE B_COUNTER A_COUNTER REF_DIVIDER CONTROL CALIBRATION
HEX CODE 0x00 0x01 0x02 0x03 0x04 0x05
5.3.1
FUNCTIONAL_MODE
MSB b7 PD6 b6 PD5 b5 PD4 b4 PD3 b3 PD2 b2 PD1 b1 PD0 LSB b0 B11
FUNCTIONAL_MODE register is used to select different functional mode for the STW81102 synthesizer according to the following table: Table 16. Different functional mode of the FUNCTIONAL_MODE register
Description Power down mode Enable VCO A, output frequency divided by 2 Enable VCO B, output frequency divided by 2 Enable external VCO, output frequency divided by 2 Enable VCO A, output frequency divided by 4 Enable VCO B, output frequency divided by 4 Enable external VCO, output frequency divided by 4 Enable VCO A, direct output Enable VCO B, direct output Enable external VCO, direct output
Decimal value 0 1 2 3 4 5 6 7 8 9
25/42
I2C bus interface
STW81102
5.3.2
B_COUNTER
MSB b7 B10 b6 B9 b5 B8 b4 B7 b3 B6 b2 B5 b1 B4 LSB b0 B3
B[10:3]. Counter value (bit B11 in the previous register, bits B[2:0] in the next register)
5.3.3
A_COUNTER
MSB b7 B2 b6 B1 b5 B0 b4 A4 b3 A3 b2 A2 b1 A1 LSB b0 A0
Bits B[2:0] for B Counter, A Counter value.
5.3.4
REF_DIVIDER
MSB b7 R9 b6 R8 b5 R7 b4 R6 b3 R5 b2 R4 b1 R3 LSB b0 R2
Reference Clock divider ratio R[9:1] (bits R1, R0 in the next register).
5.3.5
CONTROL
MSB b7 R1 b6 R0 b5 PLL_ A1 b4 PLL_ A0 b3 CP SEL2 b2 CP SEL1 b1 CP SEL0 LSB b0 PSC_ SEL
The CONTROL register is used to set the Charge Pump current, the VCO output voltage amplitude and the Prescaler Modulus. PLL_A[1:0]: VCO amplitude CPSEL[2:0]: Charge Pump output current PSC_SEL: Prescaler Modulus select ('0' for P=16, '1' for P=19) The LO output frequency is programmed by setting the proper value for A,B and R according to the following formula: F REF_CLK F OUT = D R ( B P + A ) --------------------------R
26/42
STW81102
I2C bus interface
where DR equals
{
1 0.5 0.25
for Direct Output for Output Divided by 2 for Output Divided by 4
and P is the selected Prescaler Modulus
5.3.6
CALIBRATION
MSB b7 INIT CAL b6 SER CAL b5 SEL EXT CAL b4 CAL4 b3 CAL3 b2 CAL2 b1 CAL1 LSB b0 CAL0
This register controls VCO calibrator. INITCAL: resets the auto-calibrator State Machine (writing to "1" and back to "0") SERCAL: at "1" starts the VCO auto-calibration (should be reset to "0" at the end of calibration) SELEXTCAL: test purpose only; must be set to '0' CAL[4:0]: test purpose only; must be set to '0'
5.3.7
READ-ONLY register
MSB b7 DEV_ID1 b6 DEV_ID0 b5 LOCK_ DET b4 INT CAL4 b3 INT CAL3 b2 INT CAL2 b1 INT CAL1 LSB b0 INT CAL0
This register is automatically addressed in the 'current byte address read mode'. DEV_ID[1:0]: device identifier bits; returns '01' LOCK_DET: "1" when PLL is locked INTCAL[4:0]: internal value of the VCO control word
5.4
VCO calibration procedure
The calibration of the VCO center frequency is activated by a '0' to '1' transition of the SERCAL bit (CALIBRATION Register bit[6]). In order to program properly the device, ensuring the VCO calibration, the following procedure is required before every channel change: a) Program all the Registers using a multi-byte write sequence with the desired settings (Functional Mode, B and A counters, R counter, VCO amplitude, Charge
27/42
I2C bus interface
STW81102 Pump, Prescaler Modulus) and all the bits of the "CALIBRATION" Register (05H) set to '0'
b)
Program the "CALIBRATION" Register using a single-byte write sequence (subaddress 05H) with the SERCAL bit set to '1'
The maximum allowed PFD frequency (fPFD) to perform the calibration process is 1 MHz; if the desired fPFD is higher than 1MHz the following steps are needed: - - Perform all the steps of the calibration procedure programming the desired VCO frequency with a proper setting of R, B and A counter so that fPFD is 1MHz. Program the device with the proper setting for the desired VCO and PFD frequencies according to the above step a) only.
28/42
STW81102
SPI digital interface
6
6.1
SPI digital interface
General features
The SPI digital interface is selected by hardware connection of the pin #21 (DBUS_SEL) to 3.3V. The STW81102 IC is programmed by means of a high-speed serial-to-parallel interface with write option only. The 3-wires bus can be clocked at a frequency as high as 100MHz to allow fast programming of the registers containing the data for RF IC configuration. The programming of the chip is done through serial words with whole length of 26 bits. The first 2 MSB represent the address of the registers. The others 24 LSB represent the value of the registers. Each Data bit is stored in the internal shift register on the rising edge of the CLOCK signal. On the rising edge of the LOAD signal the outputs of the selected register are sent to the device. Figure 22. SPI input and output bit order
29/42
SPI digital interface Table 17.
MSB
Address Data for Register (24 bits)
STW81102
SPI data structure (MSB is sent first)
LSB
A1 A0 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
Table 18.
Address decoder and outputs
Outputs A0 DATABITS D23-D0 24 24 24 24 No Name Function Reference divider, VCO amplitude, VCO Calibration, Charge Pump current, Prescaler Modulus Functional modes, VCO dividers Reserved Reserved
Address A1
0 0 1 1
0 1 0 1
0 1 2 3
ST1 ST2 ST3 ST4
6.2
Timing specification
Figure 23. SPI Timing specification
Table 19.
Parameter tsetup thold tclk tload tclk_loadr tclk_loadf
SPI Timing specification
Description DATA to CLOCK setup time DATA to clock hold time CLOCK cycle period LOAD pulse width CLOCK to LOAD rising edge CLOCK to LOAD falling edge Min. 0.8 0.2 10 3 2 0.5 Typ. Max. Unit ns ns ns ns ns ns
30/42
STW81102
SPI digital interface
6.3
Bits table
Table 20. Bits
Register name = ST1 Description
Serial Interface Address = 00h Bit [23] [22] [21] [20] [19] [18] [17] [16] [15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] Name R9 R8 R7 R6 R5
REFERENCE CLOCK DIVIDER RATIO R4 R3 R2 R1 R0 PLL_A1 VCO Amplitude Control PLL_A0 CPSEL2 CPSEL1 CPSEL0 PSC_SEL INITCAL SERCAL SELEXTCAL CAL4 CAL3 CAL2 CAL1 CAL0 Prescaler Modulus select (`0' for P=16, `1' for P=19) test purpose only; must be set to `0' Enable VCO calibration (see paragraph xxx) test purpose only; must be set to `0' test purpose only; must be set to `0' Charge Pump output current Control
31/42
SPI digital interface Table 20. Bits (continued)
Register name = ST1 Description
STW81102
Serial Interface Address = 00h Bit [23] [22] [21] [20] [19] [18] Name PD6 PD5 PD4 PD3 PD2 PD1
[17]
PD0
DEVICE FUNCTIONAL MODES 0. Power down 1. Enable VCO A, output frequency divided by 2 2. Enable VCO B, output frequency divided by 2 3. Enable external VCO, output frequency divided by 2 4. Enable VCO A, output frequency divided by 4 5. Enable VCO B, output frequency divided by 4 6. Enable external VCO, output frequency divided by 4 7. Enable VCO A, direct output 8. Enable VCO B, direct output 9. Enable external VCO, direct output
[16] [15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]
B11 B10 B9 B8 B7 B6 B Counter Bits B5 B4 B3 B2 B1 B0 A4 A3 A2 A1 A0 A Counter Bits
The LO output frequency is programmed by setting the proper value for A,B and R according to the following formula: F REF_CLK F OUT = D R ( B P + A ) --------------------------R
where DR equals
{
1 0.5 0.25
for Direct Output for Output Divided by 2 for Output Divided by 4
and P is the selected Prescaler Modulus
32/42
STW81102
SPI digital interface
6.4
VCO calibration procedure
The calibration of the VCO center frequency is activated by a '0' to '1' transition of the SERCAL bit (ST1 Register bit[6]). In order to program properly the device, ensuring the VCO calibration, the following procedure is required before every channel change: a) b) c) Program the ST1 Register with the desired settings (R counter, VCO amplitude, Charge Pump, Prescaler Modulus) and SERCAL bit set to '0' Program the ST2 Register with the desired settings (Functional mode, B and A counters) Program the ST1 Register with the desired settings (R counter, VCO amplitude, Charge Pump, Prescaler Modulus) and SERCAL bit set to '1'
The maximum allowed PFD frequency (fPFD) to perform the calibration process is 1 MHz; if the desired fPFD is higher than 1MHz the following steps are needed: - - Perform all the steps of the calibration procedure programming the desired VCO frequency with a proper setting of R, B and A counter so that fPFD is 1MHz. Program the device with the proper setting for the desired VCO and PFD frequencies according to the above step a) and b) only.
33/42
Application information
STW81102
7
Application information
The STW81102 features three different alternatively selectable bands: direct output (3.0 to 3.62GHz and 4.0 to 4.65GHz), divided by 2 (1.5 to 1.81GHz and 2.0 to 2.325GHz) and divided by 4 (750 to 905MHz and 1000 to 1162.5MHz). In order to achieve a suitable power level, a good matching network is needed to adapt the output stage to a 50 load. Moreover, since most of commercial RF components have single ended input and output terminations, a differential to single ended conversion could be required. Below different matching configurations for the three bands are suggested as a guideline for the design of own application board. The user can find in the Evaluation Kit the ADS Design for each matching configuration suggested in this section. The name of the corresponding ADS Design is reported below each figure.
7.1
Direct Output
If a differential to single conversion is not needed it is possible to match the output buffer of the STW81102 in the simple way shown in Figure 24. Figure 24. Differential/single ended output network in the 3.0 - 4.65GHz range (MATCH_LC_LUMP_4G_DIFF.dsn)
VCC
50 O hm 2 nH 50 O hm
R FO UTP
10pF
R F O UTN
50 O hm
10pF
50 O hm 2nH
VCC
Since most of discrete components for microwave applications are single ended, the user can easily use one of the two outputs and terminate the other one to 50 with a 3dB power loss. Alternatively it is possible to combine the 2 outputs in different ways. A first topology for the direct output (3.3GHz to 4.4GHz) is suggested in Figure 25. It basically consists of a simple LC balun and a matching network to adapt the output to a 50 load. The two LC networks shift output signal phase of -90 and +90 thus combining the 2 outputs. This topology, designed for a center frequency of 4GHz, is intrinsically narrow band, since the LC balun is tuned at a single frequency. If the application requires a different sub-band, the LC combiner could be easily adjusted to be tuned at the frequency of interest.
34/42
STW81102
Application information Figure 25. LC lumped balun and matching network (MATCH_LC_LUMP_4G.dsn)
VCC
3.6nH 1.1nH
6.8nH
0.7pF
RFOUTP
0.3pF
0.7pF
3.6nH
50 O hm 3.5nH
RFOUTN
1.1nH
0.3pF
The 6.8nH shunt inductor works as a DC feed for one of the open collector terminal as well as a matching element along with the other components. The 1.1nH series inductors are used to resonate the parasitic capacitance of the chip. For an optimum output matching it is recommended to use 0402 Murata or AVX capacitors and 0403 or 0604 HQ Coilcraft inductors. It is also advisable to use short interconnection paths to minimize losses and undesired impedance shift. An alternative topology, which allows for a more broadband matching and balanced to unbalanced conversion, is shown it Figure 26. Figure 26. Microstrip line and lumped matching network (MATCH_4G_HYBRID.dsn)
VCC
L=1.5nH
C=0.7pF RFOUTP C=8pF
W=16mil L=400mil
2:1
50Ohm load
RFOUTN C=0.7pF
L=1.5nH
VCC
Those results have been achieved on an FR4 substrate with a thickness of 350um. By using this topology the STW81102 is capable to deliver an almost flat power to a 50 load with a return loss grater than 10dB over the whole frequency band (3.0 to 4.65GHz). For the differential to single conversion the 50 to 100 Johanson balun is recommended (3700BL15B100).
35/42
Application information
STW81102
7.2
Divided by 2 Output
If the user's application does not require a balanced to unbalanced conversion, the output matching reduces to the simple circuit shown below (Figure 27). This solution can be easily used to provide one single ended output just terminating the other output at 50 with a 3dB power loss. Figure 27. Differential/single ended output network in the 1.5 - 2.325GHz range (MATCH_LC_LUMP_2G_DIFF.dsn)
VCC
50 O hm 22nH 50 Ohm
RFOUTP
10pF
RFOUTN
50 O hm
10pF
50 Ohm 22nH
VCC
A first solution to combine the differential outputs is the lumped LC type balun tuned in the 2GHz band (Figure 28). Figure 28. LC lumped balun for divided by 2 output (MATCH_LC_LUMP_2G.dsn)
VCC
5.5nH 3nH
1nH
RFOUTP
1pF
2.8pF
5.5nH
2nH
50 O hm
RFOUTN
3nH
1pF
The same recommendation for the SMD components applies also for the divided by 2 output. Another topology suitable to combine the two outputs for the divided by 2 frequencies is represented in Figure 29.
36/42
STW81102 Figure 29. Lumped output matching for divided by 2 output (MATCH_LC_BAL_2G.dsn)
VCC
50 O hm 22nH
Application information
RFOUTP
10pF
10pF
2:1
RFOUTN
50 Ohm
10pF
50 Ohm
22nH
VCC
For the differential to single conversion the 50 to 100 Johanson balun (1600BL15B100) is recommended.
7.3
Divided by 4 Output
The same topology, components values and considerations of Figure 27, applies also for the divided by 4 output (MATCH_LC_LUMP_1G_DIFF.dsn). As for the previous sections, a solution to combine the differential outputs is the lumped LC type balun tuned in the 1GHz band (Figure 30). An output power of approximately 5 dBm is delivered to a 50 load over the whole band (0.75GHz to 1.17GHz). Figure 30. LC lumped balun for the divided by 4 output (MATCH_LC_LUMP_1G.dsn)
VCC
25 Ohm
5.5nH
4pF
5.5nH
RFOUTP
4pF 6pF
5.5nH
14nH
50 Ohm
RFOUTN
4pF
25 Ohm
5.5nH
4pF
VCC
37/42
Application information
STW81102
If the user prefers to use an RF balun it is possible to adopt the same topology depicted in Figure 29, just changing the balun and the resistor value (Figure 31). The suggested balun for the 0.75 - 1.17GHz frequency range is the 1:1 Johanson 900BL15C050. Figure 31. Lumped output matching for divided by 4 output (MATCH_LC_BAL_1G.dsn)
VCC
25 Ohm 22nH
RFOUTP
10pF
10pF
1:1
RFOUTN
25 Ohm
10pF
50 Ohm
22nH
VCC
7.4
Evaluation Kit
Upon request an Evaluation Kit can be delivered. It includes:

Evaluation Board GUI (Graphical User Interface) to program the device Measured S parameters of the RF output ADS2005 schematics providing guidelines for application board design STWPLLSim software for PLL loop filter design and noise simulation
Three different Evaluation Kits are available, one optimized for 1GHz frequency range, one for 2GHz frequency range and the last one for 4GHz range. While ordering please specify the following order codes: Table 21. Order code of the evaluation kit
Part Number STW81102-EVB1G STW81102-EVB2G STW81102-EVB4G Description 1GHz frequency range - Divider by 4 output optimized 2GHz frequency range - Divider by 2 output optimized 4GHz frequency range - Direct output optimized
The three Evaluation Kits differ only regarding the output balun and the choke inductors of the related Evaluation Board; each Evaluation Kit is provided with the needed components (baluns and inductors) in order to easily adapt the output stage to a different frequency range.
38/42
STW81102
Application diagram
8
Application diagram
Figure 32. Application diiagram
From/to -controller
100
100
100
15p
15p
15p
AD D0/LO AD
SCL/CL K
1n
22p
10
SDA/DA TA
E XT _ PD
ADD2
ADD1
VDD1
VDD_D BU S
I2C
VDD_VCOA VDD_DIV2
DBUS_SEL VDD_BUFVCO
SPI
VDD1
VDD_OUTBUF EXTVCO_INP 1n OUTBUFP
VDD2
22p 10
RF Out
1:2
STW81102
EXTVCO_INN
OUTBUFN
VDD_PLL
VDD_DIV4 VDD_VCOB VD D_ E SD VDD _C P
REF_CLK LO CK_DE T 1.8n TEST2
ref clk
51
VDD1 VDD1
1n 22p 10
VCTR L
IC P
RE X T
4.7K
VDD1
2.2K 8.2K 220p 6.8n 1n 22p 10 150p
T ES T 1
loop filter
to -controller
Note:
1 2 3
See Application Information (Section 7) for further information on Output Matching topology. EXT_PD, ADD2, ADD1 (and ADD0 when I2C Bus is selected) can be hard wired directly on the board. Loop Filter values are for fPFD = 400KHz and ICP = 4mA.
39/42
Package information
STW81102
9
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: http://www.st.com. Figure 33. VFQFPN28 Mechanical Data & Package Dimensions
REF. A A1 A2 A3 b D D1 D2 E E1 E2 e L P K ddd 0.350 2.550 2.550 4.850 0.180 4.850 mm MIN. 0.800 TYP. 0.900 0.020 0.650 0.200 0.250 5.000 4.750 2.700 5.000 4.750 2.700 0.500 0.550 0.750 0.60 14 0.080 0.014 2.850 0.100 2.850 5.150 0.100 0.191 0.300 5.150 MAX. 1.000 0.050 1.000 MIN. 0.031 inch TYP. 0.035 MAX. 0.039
OUTLINE AND MECHANICAL DATA
0.0008 0.0019 0.025 0.0078 0.007 0.0098 0.012 0.191 0.197 0.187 0.106 0.197 0.187 0.106 0.020 0.022 0.029 0.0236 14 0.003 0.113 0.113 0.203 0.203 0.039
Notes: 1) VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Packages No lead. Very thin: A = 1.00 Max. 2) The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body. Exact shape and size of this feature is optional.
VFQFPN-28 (5x5x1.0mm) Very Fine Quad Flat Package No lead
7655832 A
40/42
STW81102
Revision history
10
Revision history
Table 22.
Date 06-Mar-2006
Document revision history
Revision 1 Initial release. Changes
41/42
STW81102
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
42/42


▲Up To Search▲   

 
Price & Availability of STW81102

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X